
ft . 7 SE IL K M Q .4~ _R I PA G E

_ _ _ _ _

,' Ao PAGELj Form Approved'==" '"' REPOR ll TION PAGE OMBNo n704-0188

" lb RESTRICTIVE MARKINGS

_ECTEM3AD-A2 15 3 18 "2 ii8 ~RPR

-- T E21 8 3 .DISTRIBUTION /AVAILABILITY OF REPORT
Approved for Public Release;
ditribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(SAW 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Ai '-K.. 9- 1 3 0
6a. NAME OF PERFORMING ORGANIZATION 6b. OFcICE SYMBOL 7a. NAME Or MONITORING ORGANIZATION
Oregon Graduate Center (if applicable)

Department of CS & E AFOSR/NM

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Baeverton, OR 97006 Building 410

Bolling, AFB DC 20332-6448

8a. NAME OF FUNDING/SPONSORING I8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AFOSR I _N_ M AFOSR 87-0064

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Buldn 40PROGRAM PROJECT TASK IWORK UNIT

Building 410 ELEMENI NO. NO. NO ACCESSION NO,
Boiling, AFB DC 20332-6448 6__ __ __ __ _ __ __ __ _ __ __ __ _ __ __ __ _ 61 102F 2304 4/7

11. TITLE (Include Security Classification)

Constructive Negotiation in Logic Programs

12. PERSONAL AUTHOR(S)

Richard Hamlet

13a. TYPE OF REPORT 13b. TIME COVEREDDA P r D 15- PAGE COUNT
FINAL IFROM ±~ TO 11. DA'I TE~ OF REOR (YaMntDy

16. SUPPLEMENTARY NOTATION

I

17. COSATI CODE, 18. SUBJECT TERMS (Cortinue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTAACT (Continue on reverse if necessary and identify by block number)

Logic programming is declarative, but its programs can be executed relatively
efficiently. This balance is a precarious one: languages with a more imperative nature
are much faster in execution, but programming is more difficult; if the declarative
expressiveness of the language is extended, its execution can become so slow that it is
unusable. The languages typified by "pure" PROLOG strike this balance on the side of
efficiency, by fixing on SLD resolution as the execution algorithm. The Horn-clause

subset of first-order logic for which SLD resolution is adequate is limited in the
naturalness of its expressiveness, and the most notable omission is that negative
information cannot be expressed.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURIT ',CLAS JFICATION
0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS (I t , , 4,

1' tPNILE INDIVIDUAL 22b. TELEPHONE ('rlude Area Code) 22c. OFFICE SYMBOL
22a A 611 E (202) 767- 5()?NL7 NM

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

g... // /7 c'7 I~I I7

x-e,. I305

Final Report

AFOSR Grant 87-0064
Constructive Negation in Logic Programs

Richard Hamlet
Department of Computer Science and Engineering

Oregon Graduate Center
Beaverton, OR 97006

(503) 690-1153

Summary

This grant supported the final year of Clifford Walinsky's dissertation research. Dr.
Walinsky's thesis, with the same title as this grant, has been accepted by OGC, and he is
now employed as Assistant Professor of Computer Science by Dartmouth College,
Hanover, NH. His thesis work is of high quality, and the ideas it embodies will be
important in the emerging area of logic-programming negation.

''

1. The Problem of Negation in Logic Programming

Logic programming is declarative, but its programs can be executed relatively
efficiently. This balance is a precarious one: languages with a more imperative nature
are much faster in execution, but programming is more difficult; if the declarative
expressiveness of the language is extended, its execution can become so slow that it is
unusable. The languages typified by "pure" PROLOG strike this balance on the side of
efficiency, by fixing on SLD resolution as the execution algorithm. The Horn-clause
subset of first-order logic for which SLD resolution is adequate is limited in the
naturalness of its expressiveness, and the most notable omission is that negative
information cannot be expressed.

The most common extension of PROLOG incorporating negation is the idea of
negation by failure (NbF). NbF ik a "non-logical" extension to Horn clauses, because its
operational meaning is logically incorrect, and programs using it therefore can surprise
their authors with unexpected behavior. But it has a further, more serious drawback: it
compromises the basic paradigm of logic-programming computing. In a pure PROLOG
program, computation proceeds by instantiation of variables in predicates, so that a
successful predicate always yields the values that demonstrate its success. When NbF is
added, this constructive character is lost.

At the other extreme from NbF, adding a true logical negation to PROLOG would
require execution by a general-purpose theorem prover, whose speed can be arbitrarily
slower than SLD resolution. A number of compromise proposals have been introduced,
but the best of them (in MU Prolog, for example) attack only the logical incorrectness of
NbF, not its failure to provide constructive demonstrations.

2. Constructive Negation

Clifford Walinsky noted a device long used by programmers to get around the lack
of negation in PROLOG. Faced with the necessity for defining (say)
RelatedByMarriage (X.Y), and needing its negation -,RelatedByMarriage (X. Y),
the programmer can sometimes invent a "negative predicate", sny
UnrelatedByMarriage, and define it (positively) in a way that is just the dual of its
positive counterpart. When this is possible, the result is a regular PROLOG program
that can be efficiently executed by SLD resolution (in fact, by the usial interprotpr
without change), and that fully retains the constructive nature of execution. Walinsky
explored this idea: the circumstances under which the trick works, and its automation so
that the programmer need write only the positive form of the predicate (like
RelatedByMarriage) and have the "negative" form (UnrelatedByMarrlage)
implicitly defined as the meaning of -'RelatedByMarrlage.

The best that can be expected from a foray into logic-programming negation is
partial success, since if true negation were implemented, the resulting power would
require substantially slower execution techniques. By holding to minimal modifications in
the execution procedure, Walinsky discovered a clear (if limited) way through the welter
of possible extensions to PROLOG. He defined constructive negation as the
generalization of the programming trick described above, found conditions under which it
is logically sound, and implemented automatic transformation rules and the checks for its *d
validity. 'or

2 I I

Transformation of positive predicates into their negative duals can introduce
universal quantification in the body of the defining clause, so Walinsky had to attack this
difficult problem as well. Constructive implementation of universal quantifiers in general
requires unbounded searches, but in an important subcase implementation is practical.
Frequently, the universally quantified formula is an implication, allowing the antecedent
to "filter" instantiations of the consequent. He modified the SLD resolution procedure to
handle this situation, and explored circumstances under which the resulting executions
are practical.

3. Specific Accomplishments

Cliff Walinsky's thesis lays solid groundwork for systematic study of negation in
logic programming that preserves the declarative nature of the languages like pure
PROLOG, can be efficiently executed without major changes to present interpreters, and
allows programs to retain their constructive solutions. The work is a model of defining a
significant research topic, exploring and changing it as more information is gathered. and
successfully obtaining results of the kind sought.

AFOSR support not only made possible the research described above, but also
provided for extra opportunities for Walinsky. He was invited to attend a Washington,
DC workshop as student observer. He was able to attend two major conferences (one an
international gathering in Australia which otherwise would have been beyond possibility),
to meet and interact with other researchers (and to thereby interest others in his ideas),
and ultimately to obtain employment in a prestgiou3 institution where he will continue
to be a productive researcher. Several important logic-programming theoreticians visited
OGC and provided contact with the broader research community. J-L. Lassez and J.
Jaffar are at the core of the logic-programming group at IBM (Yorktown); Lassez invited
Cliff to join that group as a visitor in the near future. R. Topor (Melbourne) provided
some invaluable early direction for Cliff's work.

The one area in which Cliff was not as successful as we had hoped was in
publishing his ideas. He submitted papers to both logic-programming conferences, but
they were not accepted. The field is new, not always well defined, and very competitive.
There is a measure of politics in writing acceptable papers, particularly for conferences
with a high rejection rate. (We were able to learn that the difficulty is not in the ideas,
which should find acceptance in the more controlled arena of professional journals.)

The technical reports being submitted under separate cover give a complete
description of constructive negation:

Walinsky, C., "Constructive Semantics for Negation", Report CS/E 87-008, Oregon
Graduate Center, September, 1987.

Walinsky, C., "Constructive Negation in Logic Progr- , Report CS/E 87-009,
Oregon Graduate Center, September, 1987 (PhD thesis).

